CRH SSD
MAY 1989

CENIRAL REGION TECHNICAL ATTACHMENT 89-17

RROBLEMS WITH THE ICWF'S CLOUD FORECASTING ALGORITHM

AWS FECHNICAL LIBRARY
FL 4414
SCOTT AFB IL 62225

Glenn A. Field
National Weather Service Forecast Office Milwaukee, Wisconsin

1. Introduction

The purpose of this paper is to provide fellow forecasters with a complete listing of the phrases, both at night and during the day, which are produced by the Interactive Computer Worded Forecasting (ICWF) system for all combinations of numerical cloud cover input. This can be used as a handy reference. This paper also discusses some of the problems and inconsistencies that can be seen from these listings and gives suggestions for improvement.

For any given period, day or night, three numerical cloud oover guidance numbers (FPC) are used (i.e., at night 00Z, 06Z, and 12 Z values) by the ICWF in determining the outputted phrase. Since there are four possible values ($1=C L R$, $2=$ SCT, $3=\mathrm{BKN}, 4=0 \mathrm{VC}$), there are 64 possible combinations for a 12 -hour night or day period (fram 1,1,1 up to 4,4,4). The ICWF allows one to select the "Camplexity Constant" that best suits the forecaster's needs. For cloud cover, the complexities can range from 1 (most detail) to 3 (least detail). For each of the 64 possible cloud cover sequences, both night and day phrases were obtained for each of the three complexity levels (a total of 368 phrases). By having the complete listings (provided in this paper) the forecaster can see which phrase would best suit the situation and then decide on the appropriate complexity constant.

Specifically, using the $12 Z$ run cycle, the "tonight" and "next day" periods' cloud guidance was "revised" with each of the possible combinations. Because it is only possible to have 20 separate zones (in Wisconsin), the program was run several times. The phrases which the computer gave were tabulated. It is important to point out that the 1st and 4 th periods (tonight and next day) were chosen because they were independent of one another. That is, if you revise "tonight" with $1,1,2(00 \mathrm{Z}, 06 \mathrm{Z}, 12 \mathrm{Z})$ then revise "tamorrow" (Period 2) with $1,1,2(12 \mathrm{Z}, 18 \mathrm{Z}, 00 \mathrm{Z})$ before running the program. It will replace the 12 Z value of 2 in the "tonight" period with 1 since 12 Z is overlapping.

Thus, night phrases were obtained from Period 1 guidance and day phrases were dbtained fram Period 4 guidance (see listings). It should be noted that according to Mr. Bob Bermowitz (NWS Techniques Development Laboratory), it was intended for there to be some "variety" in the IWF output. So for the same set
of guidance values, the Period 1 night phrase may not be the same as the Period 3 night phrase! The same is true for Periods 2 and 4 day phrases (see TDL Note 79-6). Nevertheless, by looking at just the 1st and 4 th periods, many problems and inconsistencies were found. Same of these problems were quite serious and made portions of the ICWF cloud forecasts unacceptable. The list of the various combinations of complexity, cloud category, and time period (day or night) is given below.

FOR COMPLEXITY CONSTANT = 1:

4	4	3	CLOUDY
4	4	4	CLOUDY

FOR COMPLEXITY CONSTANT = 2:

CLOUD	CATEGORY	NIGHT HRASE
	11	CLEAR
	12	MOSTLY CLEAR
1	13	MOSTLY CLEAR
1	14	BECOMING CLOUDY
1	21	MOSTLY CLEAR
	22	PARTLY CLOUDY
1	23	PARTLY CLOUDY
	24	BECOMING CLOUDY
	31	VARIABLE CLOUDINESS
1	32	PARTLY CLOUDY
1	33	BECOMING MOSTLY CLOUDY
	34	BECOMING MOSTIY CLOUDY
	41	VARIABLE CLOUDINESS
1	42	VARIABLE CLOUDINESS
	43	BECOMING MOSTIY CLOUDY
	44	BECOMING CIOUDY
	11	MOSTLY CuEAR
2	12	PARTLY CLOUDY
2	13	PARTLY CLOUDY
	14	VARIABLE CLOUDINESS
2	21	PARTLY CLOUDY
	22	PARTLY CLOUDY
	23	PARTLY CLOUDY
	24	VARIABLE CLOUDINESS
	31	PARTLY CLOUDY
	32	PARTLY COOUDY
	33	MOSTLY CLOUDY
	34	MOSTLY CLOUDY
2	41	VARIABLE CIOUDINESS
	42	VARIABLE CLOUDINESS
	43	MOSILY CLOUDY
2	44	BECOMING CIOUDY
	11	MOSTLY CLEAR
	12	PARTLY CLOUDY
	13	VARIABLE CLOUDINESS
3	14	VARIABLE CLOUDINESS
	21	PARTLY CLOUDY
	22	PARTLY CLOUDY
3	23	MOSTLY CLOUDY
	24	MOSILY CLOUDY
	31	MOSTLY CIOUDY
3	32	MOSILY CLOUDY
3	33	MOSTLY CIOUDY
	34	MOSILY CLOUDY

DAY HRRASE
SUNNY
SUNNY
MOSTLY SUNNY
BECOMING CLOUDY
SUNNY
MOSTLY SUNNY
MOSTLY SUNNY
BECOMING CLOUDY
VARIABLE CLOUDINESS
PARTLY CLOUDY
BECOMING MOSTLY CLOUDY
BECOMING CLOUDY
VARIABLE CLOUDINESS
VARIABLE CLOUDINESS
BECOMING MOSTLY CIOUDY
BECOMING CLOUDY
SUNNY
MOSTLY SUNNY
PARTLY CLOUDY
VARIABLE CLOUDINESS
MOSTLY SUNNY
MDSTLY SUNNY
PARTLY CLOUDY
VARIABLE CLOUDINESS
PARTLY CLOUDY
PARTLY CLOUDY
MOSTLY CLOUDY
BECOMING CLOUDY
VARIABLE CLOUDINESS
VARIABLE CLOUDINESS
MOSTLY CLOUDY
BECOMING CLOUDY
PARTLY CLOUDY
PARTLY CLOUDY
VARIABLE CLOUDINESS
VARIABLE CLOUDINESS
PARILY CLOUDY
PARTLY CLOUDY
MOSILY CLOUDY
MOSTLY CLOUDY
MOSTLY CLOUDY
MOSTLY CLOUDY
MOSTLY CIOUDY
MOSILY CLOUDY

341	VARIABLE CIOUDINESS
342	MOSILY CLOUDY
343	MOSILY CLOUDY
344	CLOUDY
411	VARIABLE CIOUDINESS
412	VARIABLE CLOUDINESS
413	VARIABLE CIOUDINESS
414	VARIABLE CLOUDINESS
421	PARTILY CLOUDY
422	VARIABLE CIOUDINESS
423	MOSILY CLOUDY
424	MOSTLY CLOUDY
431	MOSILY CLOUDY
432	MOSILY CLOUDY
433	MOSILY CLOUDY
434	CLOUDY
441	MOSILY CLOUDY
442	MOSTLY CLOUDY
443	CLOUDY
444	CLOUDY

FOR COMPLEXITY CONSTANT $=3$:

CLOUD CATEGORY	NIGHT PHRASE	DAY FHRASE
111	CLEAR	SUNNY ${ }^{\text {- }}$
112	MOSTLY CLEAR	SUNNY
113	MDSTLY CLEAR	MOSTLY SUNNY
114	BECOMING CLOUDY	PARILY CLOUDY
121	MDSILY CLEAR	SUNNY
122	PARTLY CLOUDY	MOSILY SUNNY
123	PARTLY CLOUDY	MOSTLY SUNNY
124	BECOMING CLOUDY	PARILY CIOUDY
131	VARIABLE CLOUDINESS	VARIABLE CLOUDINESS
132	PARILY CLOUDY	PARILY CLOUDY
133	BECOMTNG CIOUDY	VARIABLE CLOUDINESS
134	BECOMING CLOUDY	MOSTLY CLOUDY
141	VARIABLE CLOUDINESS	VARIABLE CLOUDINESS
142	VARIABLE CLOUDINESS	VARIABLE CLOUDINESS
143	BECOMTNG CLOUDY	VARIABLE CLOUDINESS
144	BECOMING CLOUDY	MOSILY CLOUDY
211	MOSTILY CLEAR	SUNNY
212	PARTLY CLOUDY	MOSILY SUNNY
213	PARILY CLOUDY	PARILY CLOUDY
214	VARIABLE CLOUDINESS	VARIABLE CLOUDINESS
221	PARTILY CLOUDY	MOSILY SUNNY
222	PARTLY CLOUDY	MOSTLY SUNNY
223	PARTILY CLOUDY	PARILY CLOUDY
224	VARIABLE CIOUDINESS	VARIABLE CLOUDINESS
231	PARTLY CLOUDY	PARTLY CLOUDY
232	PARTLY CLOUDY	PARTLY CLOUDY
233	MDSTLY CLOUDY	MDSILY CLOUDY

234	MOSTLY CLOUDY	BECOMING CLOUDY
241	VARIABLE CIOUDINESS	VARIABLE COUUINESS
242	VARIABLE CLOUDINESS	VARIABLE CIOUDINESS
243	MOSTLY CLOUDY	MOSTLY CLOUDY
244	BECOMING CLOUDY	BECOMING CLOUDY
311	MDSTLY CLEAR	PARTLY CLOUDY
312	PARTIY CLOUDY	PARTLY CLOUDY
313	VARIABLE CLOUDINESS	VARIABLE CLOUDINESS
314	VARIABLE CIOUDINESS	VARIABLE CLOUDINESS
321	PARTLY CLOUDY	PARTLY CLOUDY
322	PARTILY CLOUDY	PARILY CLOUDY
323	MOSTLY CLOUDY	MOSILY CLOUDY
324	MOSILY CLOUDY	MOSILY CLOUDY
331	MOSTLY CLOUDY	MOSTLY CLOUDY
332	MOSTLY CLOUDY	MOSTLY CLOUDY
333	MOSILY CLOUDY	MDSTLY CLOUDY
334	MOSILY CLOUDY	MOSTLY CLOUDY
341	VARIABLE CLOUDINESS	VARIABLE CLOUDINESS
342	MOSILY CLOUDY	MOSTLY CLOUDY
343	MDSTLY CLOUDY	MOSTLY CLOUDY
344	CLOUDY	CLOUDY
411	VARIABLE CLOUDINESS	CIEARING
412	VARIABLE CLOUDINESS	PARTLY CLOUDY
413	VARIABLE CLOUDINESS	VARIABLE CLOUDINESS
414	VARIABLE CLOUDINESS	VARIABLE CLOUDINESS
421	PARTLY CLOUDY	CLEARTNG
422	VARIABLE CLOUDINESS	PARTIY CLOUDY
423	MOSTLY CLOUDY	MOSTLY CLOUDY
424	MOSILY CLOUDY	MOSILY CLOUDY
431	MDSILY CLOUDY	CIEARING
432	MOSILY CLOUDY	MOSTLY CLOUDY
433	MOSILY CLOUDY	MOSILY CLOUDY
434	CLOUDY	CLOUDY
441	PARTLY CLOUDY	MOSTLY CLOUDY
442	MOSILY CLOUDY	MOSTLY CLOUDY
443	CLOUDY	CLOUDY
444	CLOUDY	CLOUDY

2. Analysis of Same Problens

After close inspection of these tables, the many problems and inconsistencies, as perceived by the author, have been broken down into the following three categories: (1) FPC guidance trends causing magnitude and/or timing errors, (2) night versus day inconsistencies, and (3) miscellaneous problems/ inconsistencies.
A. FPC Guidance Trends Causing Magnitude and/or Timing Errors

The progression (or trend) in the FPC cloud numbers is given more weight than the actual magnitude of the numbers. This adversely affects both
the wording and timing of the clouds. The most vivid examples of this are associated with a complexity constant of 1 . Consider the following combinations:
(1) 133 gives "sunny...becoming mostly cloudy by noon."

134 gives "sunny...with increasing cloudiness in the afternoon."

Obviously, 134 is cloudier than 13 3, but the ICNF makes the latter sound cloudier. Also, the ICWF increases the clouds in the morning for 133 but not until the afternoon for 13 4, whereas in actuality they both reached a 3 level by noon.
(2) 233 (day) gives "mostly cloudy."

234 (day) gives "mostly sumny with increasing cloudiness in the afternoon."

Given that 233 is mostly cloudy (reasonable), it makes no sense for 234 (which is even cloudier than 23 3) to say mostly sunny at all! Furthermore, once again the IWFF increases the clouds in the morning for 233 but not until the afternoon for 234 because the progression is given more weight than the actual magnitude. In actuality, both reach the 3 level by noon.
(3) 234 (day) gives "mostly sunny with increasing cloudiness in the afternoon."
244 (day) gives "sunny...becoming cloudy by noon."
If anything, 244 is cloudier guidance than 23 . However, because the ICWF apparently considers the smooth progression fram 2 to 3 to 4 more important than the actual magnitudes, it gives the cloudier 244 an mabashed "sunny" and gives 234 only "mostly sumny with increasing cloudiness."
B. Night Versus Day Inconsistencies

Seemingly for "variety," many of the night phrases are not merely reciprocals of their corresponding day phrases. Rather, it is apparent that for a Complexity Constant of 1 , what happens at night is often given more emphasis than what happens during the day. For Complexity Constants of 2 and 3, night clouds or trends are much less important than during the day. Here are same examples:

For Complexity 1, more emphasis at night than during day:
(1) 213 (day) gives "partly cloudy."

213 (night) gives mostly clear this evening with increasing cloudiness after midnight."
(2) 341 (day) gives "variable cloudiness."

341 (night) gives mostly cloudy this evening...clearing by morning."
(3) 432 (day) gives mostly cloudy."

432 (night) gives "cloudy this evening...becoming mostly clear by morning."
(4) 331 (night) mentions "clearing by morning," so why doesn't the day mention "clearing by evening" rather than just "mostly cloudy? ${ }^{n}$

For Complexity 2, less emphasis for cloud cover is given at night than during day:
(5) 431 (day) gives "clearing."

431 (night) gives "mostly cloudy."
It seens as though this is because people during the day will see some sunshine and realize that it's clearing; but at night, since the clearing will take place after many are fast asleep, people will only see the cloudiness. Regardless of whether this was the intent, it is this author's contention that both the day and night phrases should be the same.
(6) 134 (day) gives "becoming cloudy." 134 (night) gives "becoming mostly cloudy" (not as cloudy).
(7) 411 (day) gives "clearing." 411 (night) gives "variable cloudiness" (clearing trend ignored).
(8) Similar to (7) above, a distinction is made during the day between 411 and 412 (clearing versus partly cloudy) whereas at night they are the same (variable cloudiness).

For Complexity 3, less emphasis at night than during the day:
(9) same as (6) above.
(10) same as (7) above.
(11) same as (8) above.

One exception to the fact that night is given less emphasis for Complexities 2 and 3 is combination 112 (day) which gives "sumny" while 112 (night) gives "mostly clear" (a little more detail). Another exception is with 114 and 124 which gives "partly cloudy" during the day but "becoming cloudy" at night.

C. Miscellaneous Problems/Inconsistencies

The following examples show problems which seem to be more randam in nature with no explanations able to be offered.
(1) Camplexity 1:

3	24	(day)
3	24	(night)
gives	"mostly cloudy"	
"mostly clear this evening....becaming		
cloudy by morning."		

These should be consistent. Why would the same cloud guidance be mostly cloudy for a time during the day but mostly clear for the same time at night?
(2) Complexity 1:

441 (day) gives "cloudy...clearing by evening."
441 (night) gives "cloudy this evening...clearing by morning."
The day phrase is good here (clouds for most of the day). But why would the nighttime be cloudy only in the evening?
(3) Complexity 3:

422 (day) gives "partly cloudy."
422 (night) gives "variable cloudiness."
Why are not these the same?
(4) Complexity 1:
422 (day) gives "cloudy...becaming sunny by afternoon."
422 (night) gives "cloudy this evening...becaming mostly clear
after midnight."
(5) Complexity 1:

421 (night) gives "cloudy this evening...clearing by midnight."
421 (day) gives "cloudy...clearing by evening!"
The clouds became scattered or clear completely by midnight or noon (2nd period) according to the guidance. The night ICWF wording is good, but during the day it should read "cloudy early...clearing by noon" not by evening!

3. Conclusions

This paper has presented constructive criticism of the ICWF cloud forecasting scheme which supposedly will soon become the method by which field
forecasters are to construct their zone and local forecasts. It can be seen that there are numerous inadequacies with the current wording of the output generated for cloud cover by IWWF. While not having had access to the actual algorithm, it still was possible to identify the probable sources of the inconsistencies by reviewing the lists of output. By classifying the problems into three categories: (1) sequence/trend outweighing magnitude, (2) night versus day, and (3) miscellaneous; it is hoped that this will help make them more easily correctable. Suggestions for improvement have been given throughout the paper. However, the main suggestion would be to make the wording consistent for both night and day periods. Variety is the spice of life, but in the case of IWF cloud forecasting, it is a hindrance. It will be difficult enough for forecasters to get used to never again using "fair...partly sunny...decreasing cloudiness...partly to mostly sunny...or partly to mostly cloudy", all terms which are avoided by the ICWF.

If the wording can be made more consistent, the IWF cloud forecasting scheme could conceivably be of use to forecasters in the NEXRAD era. The forecaster could then rest assured that the wording that would be expected from certain inputted guidance numbers will, in fact, be what is generated as output. The forecaster would not have to refer to the lists which have been supplied in this paper.

4. Reference

Heffernan, M. M., and H. R. Glahn, 1979: User's Guide for TDL's Computer Worded Forecast Program. TDL Office Note 79-6, available fram U. S. Dept. of Cammerce, NOAA, National Weather Service, Silver Spring, MD, 13 pp .

